8,208 research outputs found

    Gravitational settling of 22Ne and white dwarf evolution

    Get PDF
    We study the effects of the sedimentation of the trace element 22Ne in the cooling of white dwarfs. In contrast with previous studies, which adopted a simplified treatment of the effects of 22Ne sedimentation, this is done self-consistently for the first time, using an up-to-date stellar evolutionary code in which the diffusion equation is coupled with the full set of equations of stellar evolution. Due the large neutron excess of 22Ne, this isotope rapidly sediments in the interior of the white dwarf. Although we explore a wide range of parameters, we find that using the most reasonable assumptions concerning the diffusion coefficient and the physical state of the white dwarf interior the delay introduced by the ensuing chemical differentation is minor for a typical 0.6 Msun white dwarf. For more massive white dwarfs, say M_Wd about 1.0 Msun, the delay turns out to be considerably larger. These results are in qualitatively good accord with those obtained in previous studies, but we find that the magnitude of the delay introduced by 22Ne sedimentation was underestimated by a factor of about 2. We also perform a preliminary study of the impact of 22Ne sedimentation on the white dwarf luminosity function. Finally, we hypothesize as well on the possibility of detecting the sedimentation of 22Ne using pulsating white dwarfs in the appropriate effective temperature range with accurately determined rates of change of the observed periods.Comment: To apper in The Astrophysical Journa

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    Generalised verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event Systems (DES) models. This paper presents a generalised version of a previous algorithm which tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure called OP-verifier II overcomes the limitations of the previously proposed verifier while keeping its computational complexity. Results are illustrated by a case study of a transfer line system

    Photonic crystal optical waveguides for on-chip Bose-Einstein condensates

    Full text link
    We propose an on-chip optical waveguide for Bose-Einstein condensates based on the evanescent light fields created by surface states of a photonic crystal. It is shown that the modal properties of these surface states can be tailored to confine the condensate at distances from the chip surface significantly longer that those that can be reached by using conventional index-contrast guidance. We numerically demonstrate that by index-guiding the surface states through two parallel waveguides, the atomic cloud can be confined in a two-dimensional trap at about 1Ī¼\mum above the structure using a power of 0.1mW.Comment: 5 pages, 4 figure

    Verification of the observer property in discrete event systems

    Get PDF
    The observer property is an important condition to be satisfied by abstractions of Discrete Event System (DES) models. This technical note presents a new algorithm that tests if an abstraction of a DES obtained through natural projection has the observer property. The procedure, called OP-Verifier, can be applied to (potentially nondeterministic) automata, with no restriction on the existence of cycles of 'non-relevant' events. This procedure has quadratic complexity in the number of states. The performance of the algorithm is illustrated by a set of experiments

    Efficient low-power terahertz generation via on-chip triply-resonant nonlinear frequency mixing

    Full text link
    Achieving efficient terahertz (THz) generation using compact turn-key sources operating at room temperature and modest power levels represents one of the critical challeges that must be overcome to realize truly practical applications based on THz. Up to now, the most efficient approaches to THz generation at room temperature -- relying mainly on optical rectification schemes -- require intricate phase-matching set-ups and powerful lasers. Here we show how the unique light-confining properties of triply-resonant photonic resonators can be tailored to enable dramatic enhancements of the conversion efficiency of THz generation via nonlinear frequency down-conversion processes. We predict that this approach can be used to reduce up to three orders of magnitude the pump powers required to reach quantum-limited conversion efficiency of THz generation in nonlinear optical material systems. Furthermore, we propose a realistic design readily accesible experimentally, both for fabrication and demonstration of optimal THz conversion efficiency at sub-W power levels

    Effects of two 24-week multimodal exercise programs on reaction time, mobility, and dual-task performance in community-dwelling older adults at risk of falling: a randomized controlled trial

    Get PDF
    Background Falls in older adults are considered a major public health problem. Declines in cognitive and physical functions, as measured by parameters including reaction time, mobility, and dual-task performance, have been reported to be important risk factors for falls. The aim of this study was to investigate the effects of two multimodal programs on reaction time, mobility, and dual-task performance in community-dwelling older adults at risk of falling. Methods In this randomized controlled trial, fifty-one participants (75.4ā€‰Ā±ā€‰5.6ā€‰years) were allocated into two experimental groups (EGs) (with sessions 3 times per week for 24ā€‰weeks), and a control group: EG1 was enrolled in a psychomotor intervention program, EG2 was enrolled in a combined exercise program (psychomotor intervention program + whole-body vibration program), and the control group maintained their usual daily activities. The participants were assessed at baseline, after the intervention, and after a 12-week no-intervention follow-up period. Results The comparisons revealed significant improvements in mobility and dual-task performance after the intervention in EG1, while there were improvements in reaction time, mobility, and dual-task performance in EG2 (pā€‰ā‰¤ā€‰0.05). The size of the interventionsā€™ clinical effect was medium in EG1 and ranged from medium to large in EG2. The comparisons also showed a reduction in the fall rate in both EGs (EG1: -44.2%; EG2: āˆ’ā€‰63.0%, pā€‰ā‰¤ā€‰0.05) from baseline to post-intervention. The interventionsā€™ effects on reaction time, mobility, and dual-task performance were no longer evident after the 12-week no-intervention follow-up period. Conclusions The results suggest that multimodal psychomotor programs were well tolerated by community-dwelling older adults and were effective for fall prevention, as well as for the prevention of cognitive and physical functional decline, particularly if the programs are combined with whole-body vibration exercise. The discontinuation of these programs could lead to the fast reversal of the positive outcomes achieved
    • ā€¦
    corecore